Druk bij vaste stoffen
Definitie en eigenschappen van druk in vaste stoffen
Definitie
In de context van vaste stoffen wordt druk beschouwd als een specifieke vorm van mechanische spanning waarbij de normaalcomponent van de kracht per oppervlakte-eenheid op een denkbeeldig snijvlak in het materiaal centraal staat. Deze mechanische spanning is een scalaire grootheid in isotrope omstandigheden en geeft aan met welke intensiteit de moleculaire of atomaire deeltjes binnen een vaste stof op elkaar duwen of trekken, loodrecht op een bepaald oppervlak.
Belangrijke concepten
In vaste stoffen kenmerkt druk zich door zijn rol als mechanische spanning in de normale richting: het betreft de loodrechte component van de interne krachten die brokken materiaal op elkaar uitoefenen.
Druk werkt in een ideale, isotrope vaste stof gelijkmatig in alle ruimtelijke richtingen. Dit is analoog aan hydrostatische druk in vloeistoffen, maar in vaste stoffen spreken we over richtingsonafhankelijke (isotrope) mechanische spanning als druk.
In tegenstelling tot vloeistoffen kunnen vaste stoffen naast druk ook schuifspanningen doorstaan. Voor deze les beperken we ons tot de druk, dus de loodrechte component.
Druk in vaste stoffen is uitgedrukt als de zogenaamde eerste invariant van de spanningsensor, maar op eindexamenniveau volstaat het druk te benaderen als de verhouding van een kracht tot het contactoppervlak, op een snijvlak loodrecht op de kracht.
Formules en berekeningen
Druk wordt in vaste stoffen algemeen gedefinieerd door de formule:
waarbij:
de druk voorstelt in Pascal (Pa; N/m²),
de grootte van de kracht normaal (loodrecht) op het oppervlak in Newton (N),
de oppervlakgrootte waarop deze kracht werkt, in vierkante meter (m²).
Wanneer men in de vraagstelling een voorbeeldwaarde als "
" tegenkomt, betreft dit doorgaans een vooraf gegeven waarde, bijvoorbeeld:Let op: bij het werken met druk in vaste stoffen zijn eenheden cruciaal. Vaak wordt in constructiestudies gewerkt met Newton per vierkante millimeter in plaats van per vierkante meter.
Praktijkvoorbeelden
Voorbeeld 1: Een metalen staaf met een dwarsdoorsnede van 20 mm² wordt belast met een kracht van 16 000 N, loodrecht op het oppervlak. Bereken de uitgeoefende druk.
Eerst omrekenen van oppervlakte naar SI-eenheid:
Toepassen van de formule:
Voorbeeld 2: In een gepolijst granieten blok van 0,5 m² rust een gewicht van 2 ton gelijkmatig verdeeld. Bereken de druk ter hoogte van het oppervlak.
Eerst omrekenen van massa naar kracht:
Veel gemaakte fouten
Verkeerd onderscheiden van druk en schuifspanning: Studenten verwarren vaak de loodrechte mechanische spanning (druk) met de schuifcomponenten, terwijl druk uitsluitend betrekking heeft op de normaalrichting.
Verkeerde richting van kracht: Alleen de loodrechte component telt mee voor de drukberekening, schuifcomponenten veroorzaken geen druk, maar schuifspanning.
Verwisselen van eenheden: Een fout die veel voorkomt bestaat uit het niet correct omrekenen van eenheden, bijvoorbeeld van mm² naar m², wat leidt tot drukwaarden die vele ordes van grootte verkeerd zijn.
Negeren van spanningsconcentraties: Eenvoudige drukformules gaan uit van een gelijkmatige verdeling van de kracht, maar in realistische situaties kunnen er piekspanningen optreden bij oneffen contactvlakken of puntbelasting.
Samenvatting
Druk is in vaste stoffen een specifieke vorm van mechanische spanning: de normaalcomponent van kracht per oppervlak.
De druk is in een isotrope vaste stof in alle richtingen gelijk zolang alleen uitwendige, gelijkmatig verdeelde krachten en geen schuifspanningen optreden.
De algemene formule voor druk is
, met een zeer strikte aandacht voor correcte eenheden en alleen de component van de kracht loodrecht op het oppervlak.In oefeningen op eindexamenniveau is het cruciaal om eenheden correct om te rekenen en onderscheid te maken tussen druk en andere spanningstypen.
Oefenvragen
Vraag 1: Een stalen pilar ondersteunt een verticale kracht van 150 000 N. De dwarsdoorsnede is 75 cm². Bereken de druk (in MPa) op het contactoppervlak. Antwoord: Eerst omrekenen van cm² naar m²:
Vraag 2: Een robuuste metalen plaat van 2 cm dik wordt op een vierkant oppervlak van 4 cm × 4 cm belast met een kracht van 50 000 N. Wat is de uitgeoefende druk (in N/mm²)? Antwoord: Oppervlakte: